Orthogonal/Yamanouchi irrep

Based on Kerber's book The Representation Theory of the Symmetric Group, check § 3.4.

GroupFunctions.generar_matrizFunction
generar_matriz(Y::Array{YoungTableau}, p::Perm, λ::Array{Int64,1}) -> SparseMatrixCSC

Return non-zero entries of the orthogonal irrep given by the permutation 'p' The information of the irrep is introduced via 'Y' which is a list of Standard Young tableaux

Examples

julia> guilty = StandardYoungTableaux([3,2])
julia> generar_matriz(guilty, Perm([2,1,3,4,5]), [3,2])
[1, 1]  =  -1.0
[2, 2]  =  1.0
[3, 3]  =  -1.0
[4, 4]  =  1.0
[5, 5]  =  1.0

julia> generar_matriz(guilty, Perm([1,3,2,4,5]), [3,2])
[1, 1]  =  0.5
[2, 1]  =  0.866025
[1, 2]  =  0.866025
[2, 2]  =  -0.5
[3, 3]  =  0.5
[4, 3]  =  0.866025
[3, 4]  =  0.866025
[4, 4]  =  -0.5
[5, 5]  =  1.0
source